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The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565–

574; Hansen & Coppens (1978). Acta Cryst. A34, 909–921] in experimental

X-ray charge-density studies makes use of real spherical harmonics when

describing the angular component of aspherical deformations of the atomic

electron density in molecules and crystals. The analytical form of the density-

normalized Cartesian spherical harmonic functions for up to l � 7 and the

corresponding normalization coefficients were reported previously by Paturle &

Coppens [Acta Cryst. (1988), A44, 6–7]. It was shown that the analytical form for

normalization coefficients is available primarily for l � 4 [Hansen & Coppens,

1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for

Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2.

Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge

Densities and Chemical Bonding. New York: Oxford University Press]. Only

in very special cases it is possible to derive an analytical representation of the

normalization coefficients for 4 < l� 7 (Paturle & Coppens, 1988). In most cases

for l > 4 the density normalization coefficients were calculated numerically to

within seven significant figures. In this study we review the literature on

the density-normalized spherical harmonics, clarify the existing notations, use

the Paturle–Coppens (Paturle & Coppens, 1988) method in the Wolfram

Mathematica software to derive the Cartesian spherical harmonics for l� 20 and

determine the density normalization coefficients to 35 significant figures, and

computer-generate a Fortran90 code. The article primarily targets researchers

who work in the field of experimental X-ray electron density, but may be of

some use to all who are interested in Cartesian spherical harmonics.

1. Introduction

In experimental X-ray charge-density studies the static elec-

tron density �ðrÞ ¼ �ðx; y; zÞ is described by the superposition

of aspherical nucleus-centered atom-like densities �PA(r),

called pseudoatoms (PAs) (Hirshfeld, 1971; Stewart, 1972,

1976; Hirshfeld, 1977; Hansen & Coppens, 1978; Tsirelson &

Ozerov, 1996; Coppens, 1992, 1997):

�ðrÞ ¼
P
�

�PA
� ðrÞ: ð1Þ

Regardless of the formalism, the general mathematical form

of the electron density of the pseudoatom �PA
� ðrÞ is repre-

sented as a sum of spherical core �core
� ðrÞ and valence �valence

� ðrÞ

densities, and the deformation density ���ðrÞ:

�PA
� ðrÞ ¼ �

core
� ðrÞ þ �

valence
� ðrÞ þ���ðrÞ: ð2Þ

The spherical core and valence contributions are usually based

on neutral ground-state non-interacting spherically averaged

atomic densities obtained from accurate quantum-mechanical

calculations. In the Hansen–Coppens formalism (Hansen &

Coppens, 1978; Coppens et al., 1979; Coppens, 1992, 1997) and
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later in the Stewart model (Stewart & Spackman, 1983), the

population (electron count) and the expansion–contraction of

�valence
� ðrÞ can be adjusted in the course of the least-squares fit

of the model [equation (1)] to the experimental (or theore-

tical) structure factors (Coppens, 1997). At this time we drop

the index �, and consider expansion of ��ðrÞ for a single

pseudoatom. The deformation part of the pseudoatom density

��ðrÞ is, in general, a sum of products of populations Plm, and

radial functions Rlm(r) and angular functions Almð�; ’Þ in the

spherical polar coordinate system ðr; �; ’Þ:

��ðrÞ ¼ ��ðr; �; ’Þ ¼
P

l

P
m

PlmRlmðrÞAlmð�; ’Þ; ð3Þ

where l and m are the indices of summation. In the Hirshfeld

model (Hirshfeld, 1971, 1977; Harel & Hirshfeld, 1975), the

angular functions Almð�; ’Þ are defined in terms of directional

cosines, while in the Stewart (1976) and Hansen–Coppens

(Hansen & Coppens, 1978; Coppens, 1992, 1997) formalisms,

functions Almð�; ’Þ are represented by real spherical harmo-

nics with l = 0, . . . , 1, m = �l, . . . , l, requiring a special

normalization as discussed below. In general, the real spherical

harmonic function ym
l ð�; ’Þ is the normalized linear combi-

nation of complex spherical harmonics (or, simply, spherical

harmonics) Ym
l ð�; ’Þ (Pinchon & Hoggan, 2007; Romanowski

et al., 2008):

ym
l ð�; ’Þ ¼

iffiffiffi
2
p Ym

l ð�; ’Þ � ð�1ÞmY jmjl ð�; ’Þ
� �

if m< 0;

Y0
l ð�; ’Þ if m ¼ 0;

1ffiffiffi
2
p

�
Y�m

l ð�; ’Þ þ ð�1ÞmYm
l ð�; ’Þ

�
if m> 0:

8>>><
>>>:

ð4Þ

In mathematics, spherical harmonics Ym
l ð�; ’Þ are the angular

part of the solutions for the Laplace equation (Arfken &

Weber, 2001):

r
2f ðr; �; ’Þ ¼

1

r2

@

@r
r2 @f

@r

� �
þ

1

r2 sin �

@

@�
sin �

@f

@�

� �

þ
1

r2sin2�

@2f

@’2
¼ 0: ð5Þ

Spherical harmonics Ym
l ð�; ’Þ are normalized such that (Press

et al., 1992)

R2�
0

R�
0

Ym
l ð�; ’Þ

�
Ym0

l0 ð�; ’Þ sin � d� d’ ¼ �ll0�mm0 ; ð6Þ

where the symbol ‘*’ denotes the complex conjugate, and �ij is

the Kronecker delta,

�ij ¼
0 if i 6¼ j;
1 if i ¼ j:

�
ð7Þ

Spherical harmonics Ym
l ð�; ’Þ that obey equation (6) are often

called ‘wavefunction normalized’. The general form of

Ym
l ð�; ’Þ is given by (Press et al., 1992)

Ym
l ð�; ’Þ ¼

ð2l þ 1Þ

4�

ðl �mÞ!

ðl þmÞ!

� 	1=2

Pm
l ðcos �Þ expðim’Þ; ð8Þ

where the functions Pm
l ðxÞ are the associated Legendre poly-

nomials (Press et al., 1992). Note that here we follow the

notation used in Mathematica (Wolfram Research, Inc., 2012;

Tam, 2008) according to which the Condon–Shortley phase

(�1)m (Condon & Shortley, 1951) is included in the definition

of the associated Legendre polynomials (Abramowitz &

Stegun, 1972; Press et al., 1992):

Pjmjl ðxÞ ¼ ð�1Þjmjð1� x2Þ
jmj=2 djmjPlðxÞ

dxjmj
;

P�jmjl ðxÞ ¼ ð�1Þ�jmj
ðl � jmjÞ!

ðl þ jmjÞ!
Pjmjl ðxÞ;

ð9Þ

which makes it unnecessary to include the Condon–Shortley

phase in the definition of Ym
l ð�; ’Þ. Note that Paturle &

Coppens (1988) and Coppens (1992, 1997) follow the Arfken

notation (Arfken & Weber, 2001), in which the Condon–

Shortley phase (�1)m is included in the definition of Ym
l ð�; ’Þ,

and thus excluded from the definition of the associated

Legendre polynomial Pm
l ðxÞ.

Upon the separation of a complex function Ym
l ð�; ’Þ into

the real Re[Ym
l ð�; ’Þ] and imaginary Im[Ym

l ð�; ’Þ] parts, the

real spherical harmonic function ym
l ð�; ’Þ can be also defined

as (Homeier & Steinborn, 1996)

ym
l ð�; ’Þ ¼

ffiffiffi
2
p

Im Y jmjl ð�; ’Þ

 �

if m< 0;

Y0
l ð�; ’Þ if m ¼ 0;ffiffiffi
2
p

Re Y jmjl ð�; ’Þ

 �

if m> 0:

8><
>: ð10Þ

The real spherical harmonics ym
l ð�; ’Þ have the same ortho-

normality properties [equation (6)] as Ym
l ð�; ’Þ:

R2�
0

R�
0

ym
l ð�; ’Þy

m0

l0 ð�; ’Þ sin � d� d’ ¼ �ll0�mm0 : ð11Þ

The real spherical harmonics with m > 0 differ from those with

m < 0 by multiplication of the cosine or sine functions,

respectively:

yjmjl ð�; ’Þ ¼
ð2l þ 1Þ

2�

ðl � jmjÞ!

ðl þ jmjÞ!

� 	1=2

Pjmjl ðcos �Þ cosð mj j’Þ

� NlmPjmjl ðcos �Þ cosð mj j’Þ;

y�jmjl ð�; ’Þ ¼
ð2l þ 1Þ

2�

ðl � jmjÞ!

ðl þ jmjÞ!

� 	1=2

Pjmjl ðcos �Þ sinð mj j’Þ

� NlmPjmjl ðcos �Þ sinð mj j’Þ: ð12Þ

The functions

Pjmjl ðcos �Þ
cosð mj j’Þ
sinð mj j’Þ

� �
:¼ Tm

l ð�; ’Þ ð13Þ

are often called the tesseral harmonics (Abramowitz &

Stegun, 1972; Stewart, 1976; Whittaker & Watson, 1990). Note

that because no well established notation exists for tesseral

harmonics, we shall denote these functions as Tm
l ð�; ’Þ.

The spherical harmonics, both the real and complex, can be

transformed from the spherical coordinate system ðr; �; ’Þ to

the Cartesian frame (x, y, z) using well known relationships

(Arfken & Weber, 2001):
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x ¼ r sin � cos ’;

y ¼ r sin � sin ’;

z ¼ r cos �; ð14Þ

where � 2 ½0; �� and ’ 2 ½0; 2�Þ. Of course, the reverse

transformations are given by

r ¼ x2
þ y2
þ z2

� �1=2
;

cos � ¼
z

x2 þ y2 þ z2ð Þ
1=2
¼

z

r
;

tan ’ ¼
y

x
: ð15Þ

In both the Hansen–Coppens (Hansen & Coppens, 1978;

Coppens, 1992, 1997) and Stewart (1976) formalisms, the real

spherical harmonic functions are normalized in a different way

than the functions ym
l ð�; ’Þ defined in equation (11). They are

called the density-normalized real spherical harmonics and

labeled as dm
l ð�; ’Þ (Paturle & Coppens, 1988; Coppens, 1992,

1997) to distinguish them from the wavefunction-normalized

functions ym
l ð�; ’Þ:

djmjl ð�; ’Þ ¼ N0lmPjmjl ðcos �Þ cosð mj j’Þ;

d�jmjl ð�; ’Þ ¼ N0lmPjmjl ðcos �Þ sinð mj j’Þ: ð16Þ

Using tesseral harmonics Tm
l ð�; ’Þ [equation (13)], functions

dm
l ð�; ’Þ and ym

l ð�; ’Þ can be rewritten simply as

ym
l ð�; ’Þ ¼ NlmTm

l ð�; ’Þ;

dm
l ð�; ’Þ ¼ N0lmTm

l ð�; ’Þ: ð17Þ

The functions dm
l ð�; ’Þ are normalized as follows (Hansen &

Coppens, 1978; Paturle & Coppens, 1988; Coppens, 1992,

1997):

R2�
0

R�
0

dm
l ð�; ’Þ



 

 sin � d� d’ ¼ 1 for l ¼ 0;

R2�
0

R�
0

dm
l ð�; ’Þ



 

 sin � d� d’ ¼ 2 for l> 0:

ð18Þ

Note that in the original paper by Hansen & Coppens (1978),

both the density- and wavefunction-normalized spherical

harmonics were called ylmð�; ’Þ. Using functions dm
l ð�; ’Þ, the

expansion for ��ðrÞ of a given pseudoatom becomes (Stewart,

1976; Hansen & Coppens, 1978; Coppens, 1992, 1997)

��ðrÞ ¼
Plmax

l¼0

Pl

m¼�l

PlmRlmðrÞd
m
l ð�; ’Þ: ð19Þ

Historically, it has been customary to assume that the radial

functions RlmðrÞ are independent of m (Stewart, 1976; Hansen

& Coppens, 1978; Coppens, 1992, 1997), so the expansion for

��ðrÞ becomes

��ðrÞ ¼
Plmax

l¼0

RlðrÞ
Pl

m¼�l

Plmdm
l ð�; ’Þ: ð20Þ

While functions dm
l ð�; ’Þ are uniquely defined via equations

(16)–(18), their analytical representation can be somewhat

confusing, because over the years these functions have been

written in several different forms (Paturle & Coppens, 1988;

Coppens, 1992, 1997):

djmjl ð�; ’Þ ¼ N0lmPjmjl ðcos �Þ cosð mj j’Þ ¼ Llmcjmjl ðx; y; zÞ

¼ N0lmClmcjmjl ðx; y; zÞ

d�jmjl ð�; ’Þ ¼ N0lmPjmjl ðcos �Þ sinð mj j’Þ ¼ Llmc�jmjl ðx; y; zÞ

¼ N0lmClmc�jmjl ðx; y; zÞ;

ð21Þ

where cjmjl ðx; y; zÞ are the Cartesian functions and Clm are the

so-called ‘common factors’ (Paturle & Coppens, 1988;

Coppens, 1992, 1997). Unfortunately, neither functions

cm
l ðx; y; zÞ nor pre-factors Clm can be uniquely defined, which

ultimately affects the values of the normalizations coefficients

Llm (Table 1).

Note that the two definitions give the same function

dm
l ð�; ’Þ. Additional problems arise from the fact that the

analytical forms of coefficients N0lm and Llm are available

primarily for l � 4 (Hansen & Coppens, 1978; Paturle &

Coppens, 1988; Coppens, 1992, 1997) – only in very special

cases can the analytical form of Llm for l > 4 be obtained

(Paturle & Coppens, 1988). For higher orders of l, Paturle &

Coppens (1988) proposed a simple numerical procedure for

calculation of coefficients Llm [note that in the original paper

these were called Nlm, but should not be confused with the

coefficients Nlm defined in equation (12)]. The authors

extended the list of coefficients Llm up to l � 7 (Paturle &

Coppens, 1988; Coppens, 1992, 1997), but unfortunately the

numerical techniques used (ZROOTS and QROMB; Press et

al., 1986) were able to reproduce no more than seven decimal

points in cases where the coefficients could not be expressed

analytically.

The advent of the 64-bit computer architecture, however,

allows for double-precision floating-point numbers which

can accurately express up to 15 significant figures of a real-

valued number. While this architecture did not become

readily available to workstations and servers until the 1990s

(Kohn & Margulis, 1989), 32-bit operating systems were able

to simulate double-precision floating-point numbers by

utilizing more than one register in the 32-bit processor, albeit

at higher computational cost. In the future, the 128-bit

computer architecture will allow for quad precision (up to 34

digit representations) and will require far more accurate

values of N0lm and Llm for use in scientific computer applica-

tions.

Aside from the accuracy of the normalization coefficients,

recent studies (Koritsanszky et al., 2012; Koritsanszky &

Michael, 2015) suggest that a higher multipole expansion
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Table 1
Definitions of Clm, cjmjl ðx; y; zÞ and Llm used in the literature.

Paturle & Coppens, 1988; Coppens, 1992 Coppens, 1997

l, m Clm cm
l ðx; y; zÞ Llm Clm cm

l ðx; y; zÞ Llm

2, 2+ 6 ðx2 � y2Þ=2 0.750 3 x2 � y2 0.375
2, 2� 6 xy 0.750 3 2xy 0.375



in l converges if the radial density functions RlmðrÞ

are m dependent. For this reason it becomes necessary to

determine and implement normalization coefficients that

are much more accurate than those previously reported for

l � 7.

2. Calculation of the tesseral harmonics in the
Cartesian frame Tl

m(x, y, z)

The calculation of the tesseral harmonics in the spherical polar

coordinate system Tm
l ð�; ’Þ [equation (13)] is straightforward

in Mathematica:

Tl;m½� ; ’ � :¼ If ½m � 0;

�1ð ÞmLegendreP l;Abs m½ �;Cos �½ �½ �Cos Abs m½ �’½ �;

�1ð ÞmLegendreP l;Abs m½ �;Cos �½ �½ �Sin Abs m½ �’½ ��;

ð22Þ

where we multiply Mathematica’s associated Legendre poly-

nomials (Wolfram Research, Inc., 2012; Tam, 2008) by the

Condon–Shortley phase (�1)m (Condon & Shortley, 1951) so

as to remain consistent with the Arfken (Arfken & Weber,

2001) and Coppens (Paturle & Coppens, 1988; Coppens, 1992,

1997) notations.

Formulas for the tesseral harmonics in the Cartesian frame

Tm
l ð�; ’Þ ! Tm

l ðx; y; zÞ are more complicated, as they involve

evaluating functions of the form sinð mj j’Þ and cosð mj j’Þ,
where the angle ’ is defined as tan ’ ¼ y=x [equation (15)]. To

evaluate these trigonometric functions in a form which results

in a polynomial of ðx; y; zÞ, it becomes necessary to define the

Cartesian sine (CSin) and cosine (CCos) functions by recur-

sive evaluation such that

CSin m’ð Þ ¼

0 m ¼ 0

Sin ArcTan
y

x

� �� �
¼

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p m ¼ 1

CSinðaÞCCosðbÞ þ CCosðaÞCSinðbÞ m> 1

8>><
>>:

9>>=
>>;
ð23Þ

CCos m’ð Þ ¼

0 m ¼ 0

Cos ArcTan
y

x

� �� �
¼

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p m ¼ 1

CCosðaÞCCosðbÞ � CSinðaÞCSinðbÞ m> 1

8>><
>>:

9>>=
>>;;
ð24Þ

where a ¼ Floor½m=2� and b ¼ Ceil½m=2�. The functions

Floor½x� and Ceil½x� are the standard Mathematica functions

(Wolfram Research, Inc., 2012) that return the ‘greatest

integer less than or equal to x’ and ‘smallest integer greater

than or equal to x’ (Wolfram Research, Inc., 2012), respec-

tively. These CSin and CCos functions are defined as modules

in the provided Mathematica code and occur in the definition

of Tm
l ðx; y; zÞ as

Tl;m½x ; y ; z � :¼ If ½m � 0;

ð�1ÞmLegendreP l;Abs m½ �;
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

" #

	 CCos Abs m½ �;
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ;

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
" #

;

�1ð ÞmLegendreP l;Abs m½ �;
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

" #

	 CSin Abs m½ �;
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ;

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
" #

�;

ð25Þ

where ðx; y; zÞ are evaluated as ðx=r; y=r; z=rÞ so as to remain

on the surface of a unit sphere.

3. Calculation of the normalization coefficients N0lm

For the calculation of N0lm we use the method described by

Paturle & Coppens (1988), which requires evaluation of a one-

dimensional integral:

N0lm ¼
1þ �l0

2ð2þ ð�� 2Þ�m0Þ
R 1

�1 Pjmjl ðzÞ


 

dz

: ð26Þ

The one-dimensional integral in equation (26) is defined in

terms of roots of a polynomial equation for large values of l

and thus we invoke methods in the Mathematica (Wolfram

Research, Inc., 2012) software package to perform this inte-

gration and report values of N0lm with 35 significant figures.

It should be noted that, via Mathematica’s sophisticated

numerical integration algorithms, a working precision of 70

digits was used throughout the calculation so as to avoid the

roundoff error and to make sure that the reported values truly

achieve a 35-digit level of accuracy. The numerical integration

methods employed by Mathematica make use of a global

adaptive strategy (GSA), which recursively bisects the domain

of integration and performs numerical integration with GSA

on each subregion (Wolfram Research, Inc., 2014). Each

implementation of GSA returns integral value and error

estimates and the bisection continues until error estimates are

within the requested accuracy level – in this case, 35 digits.

4. Results

The Cartesian tesseral spherical harmonic functions

Tm
l ðx; y; zÞ for l � 20 were calculated in Mathematica and

reformatted into a Fortran90-type source code (available in

the supporting information) via a simple parser program, also

written in Fortran. We note that no attempt has been made to

optimize the Mathematica-generated formulas.

The calculated N0lm values for l � 20 are provided in the

supporting information in simple ASCII text format, and also

in the form of a Fortran90-compatible module. For comple-

teness, we also include a module with wavefunction-based

normalized coefficients Nlm [equations (12) and (17)].
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The generated Fortran source code has been incorporated

in the program DenProp (Volkov et al., 2009; Michael, 2014),

including modifications necessary to calculate derivatives at r

= 0 (Volkov et al., 2006).

Functions dm
l ð�; ’Þ and their derivatives behave poorly near

the origin, as they contain direction cosines, so we remove a

factor rl from the radial function Rl(r) [equation (20)] and

incorporate it into dm
l ð�; ’Þ (Volkov et al., 2006):

RlðrÞd
m
l ð�; ’Þ ¼ r�lRlðrÞ


 �
rldm

l ð�; ’Þ

 �

: ð27Þ

Note that the normalized radial density functions Rl(r),

usually expressed as (Stewart, 1976; Hansen & Coppens, 1978)

RlðrÞ ¼ NRðnl; �Þr
nl expð��rÞ; ð28Þ

where � is the effective exponent and NRðnl; �Þ is the radial

function normalization factor (Coppens, 1992, 1997), contain

the rnl term with the condition nl � l to ‘ensure a proper

solution of Poisson’s equation at r = 0 for a Coulomb potential’

(Stewart, 1976). Thus, even if the radial function R(r) is

multiplied by r�l, the power of r in rnl�l always remains non-

negative. In the spirit of this technique, we have used Math-

ematica to generate a Fortran90 source code to calculate all

derivatives of function (27) up to the order of four (Michael &

Volkov, 2015). This code has been incorporated in DenProp

(Volkov et al., 2009) and extensively used in benchmark

studies of theoretical electron densities (Michael, 2014).
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